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The lognormal distribution as a reference for reporting aerosol 
optical depth statistics; Empirical tests using multi-year, multi-site 
AERONET sunphotometer data 

O'Neill, N. T.133, Ignatov, A.2, Holben, B. N. I ,  Eck, T. F. 

Abstract Aerosol optical depth data representative of various 
types of aerosols was employed to empirically demonstrate that 
the lognormal probability distribution is a better reference for 
reporting optical depth statistics than a normal probability 
distribution. 

Introduction 
Measurements of natural variables are often better 

characterized by probability distributions which more closely 
resemble a lognormal (!) distribution than a normal (m) 
distribution (see Campbell, 1995 for example). Aerosol optical 
depth (AOD) measurements are regularily reported in terms of the 
basic statistical parameters associated with the y2/ distribution 
(arithmetic mean and standard deviation) rather than the basic 
parameters associated with the p distribution (geometric mean and 
geometric standard deviation). Some authors have indicated that 
the latter representation may be more appropriate (Malm et al., 
[1977], King and Byrne [1980], Ignatov and Ramer [1995], 
Ignatov and Stowe [ 19991) and accordingly that AOD histograms 
and associated parameters should be referenced to log z space 
rather than T space. 

Users of AOD statistics require that the reported parameters 
adequately mimic sample histograms so that derived quantities 
meet the accuracy needs of model driven applications such as 
radiative forcing or aerosol dispersion. The more complex the 
parameterization the more fieedom one has to achieve better 
histogram characterizations. However, the increased complexity 
necessarily renders all associated operations more difficult and 
ultimately wasteful when the level of parameterization is 
excessive relative to the information content of the measurements. 
It is thus of some importance to search for a degree of 
parameterization which is as simple as possible while achieving a 
level of distribution characterization which is commensurate with 
application requirements. 

In this note we empirically evaluate the applicability of 
arithmetic and geometric parameters in log T and z space and of 
the associated ! and m probability distributions to a multi-year 
and multi-site AOD database in order to demonstrate that the ! 
distribution is systematically superior to the m distribution within 
the constraint of a uni-modal probability distribution. 

The normal and lognormal probability distributions 
The probability distribution of a series of N measurements in x 

can be written; 
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1 dN 
N dx 

P(x) = -- 

where dN is the number of samples in the increment dx and N is 
the total number of samples. The use of the exact derivative in 
equation ( 1 )  implies that the series of N measurements has been 
repeated an arbitrarily large number of times. The ! distribution is 
simply a normal distribution with x = log z; 

2 exp[ -(log z - log zg) / 2 log2pl (2a) 
I 

P,(logz) = 6 log j l  

where z is the aerosol optical depth, zg is the geometric mean and 
log 1-1 is the geometric standard deviation (see Aitchison and 
Brown, ( 1972) for example). Throughout the text "log" refers to 
loglo while "In" represents log,. The representation of the P 
distribution in T space is given by; 

1 1  
z In10 (2b) P,(z) = - -P,(logz) 

This functional representation is mathematically inconsistent 
(one does not just substitute the argument "z" for "log z" in 
P,(logz)) but we have retained the formulation to keep the 
nomenclature as simple as possible. The y2/ distribution in z space 
is; 

Table 1 summarizes the nomenclature of these three analytical 
distributions while Figure 1 illustrates the form of the 
distributions and their basic statistical parameters. When a 
particular parameter is computed for a given analytical 

log T 5 

Figure 1 ;  the left hand and right hand panels show the 
probability distributions and associated parameters in log z and 
space respectively (c.f. Table 1). The arithmetic mean of the 
normal distribution is set equal to the arithmetic mean of the 
lognormal representation in linear 5 space (i.e. <z >* = <z>(). 
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Table 1 .  Nomenclature for the analytical distributions. The analytical expressions under the P,(T) column are derived 
from equation (2b). See Fig. 1 for illustrations of most of these parameters. 
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distribution the symbol for the distribution is given as a subscript; 
no subscript indicates that the statistical parameter is computed 
for a data histogram (see Figure 2 below). 

The geometric standard deviation p is key to reporting the 
geometric mean and its variance in a form which is as intuitive as 
the arithmetic mean and its standard deviation; 

z g x  pL+l (4) 
The symmetrical limits corresponding to this formulation in log 1: 
space and the associated asymmetric limits in T space are shown 
as dash-dot lines in the left hand and right hand panels of Figure 1 
respectively. 

- 

Below we compare and evaluate the quality of B and m fits to 
data histograms. These fits will not be in the sense of minimum 
residuals but rather in the more pragmatic sense of allowing the 
analytical frequency distribution (N x P,(log z) or N x P,(T)) to 
assume the same mean, standard deviation and number of 
measurements as the data histogram. 

Some tests for the quality of normal or lognormal 
representations of data histograms 

Two common higher order parameters for the characterization 
of data histograms are the skewness and kurtosis (7, and defined 
in Ambramowitz and Stegun [ 19721). Skewness is an indicator of 
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Figure 2; sample histograms for selected cases. Figure I illustrates the meaning of the different curves and vertical lines 
(the same boldness and line types are retained in Figure 2 ) .  (a) examples for which the ! fit is clearly superior to the m fit (b) fits with 
problems related to negative skewness or bi-modality in log T space. 
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Table 2. Station and data ensemble parameters. Last two columns show associated aerosol classes for each station. 
station long. lat. ASL land cover data years aerosol aerosol influence(s) 

available background class on top of background 
96 - 98 rural biomass burning 
96 - 98 industrial & rural urban emissions, 

98 industrial & rural urban emissions 
96 - 99 rural biomass burning 
96, 98, 99 rural industrial 
97,98 maritime volcanic emissions / 

96 - 98 rural biomass burning 
98 maritime/dust industrial 

maritime aerosols 

Asian dust 

(m.1 
Waskesiu, Sask., CAN N53'55' W 106'04' 550 boreal forest 
GSFC. MD, USA N39'01' W76'52' 50 suburban 

Egbert, Ont., CAN N44' 13' W79"45' 264 farmland 
Thompson, Man.. CAN N55'47' W97'50 21 8 boreal forest 
Bondville, IL, USA N40'03' W88'22 212 farmland 
Lanai, HI, USA N20'49' W156'59' 80 island 

Mongu. Zambia S 15'1 5' E23'09' 1 107 savanna 
Bahrain N26'19' E50'30 0 island 

fit to a data histogram is to ascertain whether the fitted curve 
correctly predicts the AOD position of histogram features other 
than those used in constraining the fit. One such test is to estimate 
the histogram peak position (mode) in t space which, as will be 
seen in the data histogram examples below, is not co-located with 
the mean. 

Another feature-position test is to ascertain whether the 
representation of the I; distribution in t space can be used to 
predict the arithmetic mean (in the case of the y1/ distribution the 
test is irrelevant since the y1/ distribution mean is set equal to the 

distribution asymmetry and is negative for a distribution 
displaying a left hand tail, positive for a right hand tailed 
distribution and zero for a normal distribution. Kurtosis is an 
indicator of the peakedness of a distribution and is postive for a 
very peaked distribution, negative for a flat distribution and zero 
for a normal distribution. 

Skewness and kurtosis are measures of the general form of the 
data histogram and can be used as higher order indicators of how 
closely the form resembles a normal distribution. A test which 
permits a more intuitive understanding of the quality of an y1/ or L 
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Figure 3; (a) histogam skewness (skewness for a normal distribution, whether in log T space or t space, is Zero). 
(b)  histogram kurtosis (kurtosis for a normal distribution is zero). (c)  error in the estimated histogram peak position in t space as 
estimated using the lognomial fit distribution. (d) error in the arithmetic mean of the histogram as estimated using the lognormal ti t  
distribution. 
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arithmetic mean of the histogram). This arithmetic mean 
estimation test is interesting from the standpoint that a generally 
small mean error would ensure continuity with data sets of AOD 
arithmetic mean simply by employing the basic statistical 
parameters of the distribution to compute the arithmetic mean. 

Logarithmic and linear representations of optical depth 
histograms 

in this section we present a sampling of histograms using data 
acquired by CiMEL sunphotometers of the AERONET network 
over a variety of stations and a variable number of years. Detailed 
specifications of the AERONET instruments and data acquisition 
system are described elsewhere (Holben et al., 1998). 

Table 2 is a listing of the stations from which data were 
acquired and those years for which data was available. The table 
includes information on the background regional aerosol as well 
as major aerosol influences which may dominate local 
sunphotometry at a given station. The choice of stations was 
largely influenced by a desire to represent the greatest possible 
variety of aerosol types. The study was limited to a standard 
wavelength of 500 nm. 

All the data chosen in our study were cloud screened according 
to the procedure defined in Smirnov et al. (2000). Three months 
of data was taken as the standard sampling period in order to 
achieve a frequency of measurements which was of sufficient 
density to permit a significant number of measurements per 
sampling bin. These three months corresponded to the summer 
period of June, July and August except in the case of Mongu 
where the August to October period was chosen in order 
maximize the influence of the biomass burning season. Thirty 
sampling bins between extreme AOD values in log t space and 
sixty sampling bins between extreme AOD values in T space were 
used in the generation of data histograms. This number of bins 
seemed to give reasonably smooth histograms and distribution fits 
in both spaces; however it  was ascertained that the generated 
statistical parameters were fairly insensitive to bin number and bin 
width. 

Figure 2a shows some selected sample histograms along with 
the B and m fits in log t and t space. The two-panel figures were 
designed so that Figure I could serve as a reference template to 
indicate the salient features of the ! and m analytical distributions 
respectively. These figures also provide an indication of the 
variation in the geometric mean and geometric standard deviation 
p. The analytical fits qualitatively demonstrate the superiority of 
the B fit over the m fit both in log t space where the histogram is 
generally more symmetric and normal in appearance and in linear 
t space where the asymmetric form of the P representation is 
clearly better matched to the positively skewed form of the data 
histograms. 

Figure 2b shows some sample histograms where the ! fits were 
still generally superior to the m fits but where certain features in 
the log t histogram distribution degraded the quality of the 0 fit. 
These include the bi-modal features in the GSFC histogram of 
1998 and the negative skewness in the Mongu histogram of 1997. 

Figure 3 shows the four test parameters of skewness, kurtosis, 
peak location error and arithmetic mean estimation error for all 
stations and available years. Figures 3a and 3b demonstrate that 
the skewness and kurtosis calculated in log T space is 
systematically more normal like (closer to zero) than the 
equivalent calculations in T space. The '5 space histograms are 
positively skewed; although the log t space representation shows 
some positive skewness it is significantly less than the former. 

Figures 3c and 3d show the errors in histogram peak location 
and estimated arithmetic mean. For all stations and all years the 
rms average peak location error for the m distribution fit was 0.13 
while the rms average error for the P representation was 0.03. The 
use of the ! representation to estimate the arithmetic mean and 
standard deviation of the histogram in t space yielded rms errors 
of 0.01 and 0.04 respectively for all stations and all years (the 
arithmetic mean for the m distribution fit is set equal to the 
histogram arithmetic mean as indicated above). Thus the !J 
distribution can be used to estimate histogram features in linear t 
space to accuracies which are of the order of or a little greater 
than typical sunphotometry errors of 0.01 to 0.02. 

Conclusion 
Multi-year and multi-station AOD data was employed to 

demonstrate that the lognormal probability distribution was 
systematically a better reference for reporting AOD statistics than 
a normal probability distribution. Comparative tests in log t and t 
space showed that data histograms in the former nearly always 
corresponded to smaller values of skewness and kurtosis and 
accordingly that this was a better space for a normal 
representation of the histograms. The estimation of the AOD 
value corresponding to the histogram peak in t space was 
significantly better if a lognormal fit was applied to the data 
histogram. The use of the lognormal distribution to predict the 
arithmetic mean and standard deviation of the histogram in t 
space yielded reasonably accurate estimates and as such provides 
a means of ensuring the continuity of data archives based on 
arithmetic means. in certain cases the data histograms displayed 
apparent bi-modal features or negative skewness in log t space 
which neither distribution could adequately fit but for which the 
lognormal distribution was still a better reference. 
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